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The hybrid FEM-SDBCI method is developed for the finite element computation of time-harmonic eddy current problems in open 
boundary domains. The method is similar to the well-known FEM-BEM, but it assumes a Dirichlet boundary condition on the 
truncation boundary instead of a Neumann one. Shorter solving times are obtained with respect to FEM-BEM. 
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I. INTRODUCTION 
 

Both FEM-BEM (Finite Element Method - Boundary 
Element Method) and FEM-DBCI (Dirichlet Boundary 
Condition Iteration) [1,2] couple a differential equation, 
which governs the interior problem, with an integral one 
which makes use of the free-space Green function and 
expresses the unknown boundary condition on the fictitious 
truncation boundary. The differences between the two 
methods are the following: in FEM-BEM an unknown 
Neumann condition is assumed on the truncation boundary, 
which coincides with the integration surface of the integral 
equation, whereas in FEM-DBCI an unknown Dirichlet 
boundary condition is assumed on the truncation boundary 
and another surface is used in the integral equation, so that 
singularities are avoided. Both the resulting global algebraic 
systems are partly sparse and partly dense.  
 In order to alleviate the major drawback of FEM-DBCI, 
that is, the insertion of some element layers between the 
integration and truncation surfaces, this paper presents a 
modified version of the method, named FEM-SDBCI 
(Singular DBCI), in which the two surfaces are coincident 
and the integral equation becomes singular. 
 

II.  THE FEM-SDBCI METHOD 
 

 Consider an eddy current problem, in which a set of 
massive conductors are placed near a set of coils through 
which given time-harmonic source currents flow. Under the 
assumption of quasi-static time-harmonic steady-state 
behavior, the problem can be conveniently analyzed in terms 
of the electric field E by solving the differential equation: 
 

     ( ) SJ jEjE ω−=σω+×∇ν×∇         (1) 
 

where ν is the magnetic reluctivity, σ the electric conductivity, 

ω the angular frequency and SJ  the given current density in 

the coil regions. In order to apply FEM, the unbounded 
medium is truncated by means of a fictitious boundary ΓF, 
enclosing all the eddy current conductors. Optionally some 
coils may be left outside. On ΓF a non-homogeneous Dirichlet 
boundary condition is assumed: 
 

         FEEn̂ =×                                            (2) 

where n̂  is the outward versor normal to FΓ and FE  is the 

component of the electric field along ΓF. Discretizing the 
domain by means of tetrahedral edge elements, and applying 
the Galerkin method, the following matrix equation is 
derived:  
 

       FF0 EMNME −=                      (3) 
 

where M and MF are sparse matrices, E and EF are the arrays 
of the field expansion coefficients for the internal and 
boundary edges, respectively, N0 is due to the internal source 
currents. 
 Another equation relating E to EF is obtained by expressing 
the field on a point P on ΓF by means of the integral:  
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where r is the distance between points P and P', extE  is the 

field due to the coil source currents external to ΓF, and α is 
the solid angle of the domain at P. The expansion coefficient 
Em relative to an edge em lying on the fictitious boundary is 
expressed as: 
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where Tk is the k-th triangular patch on the fictitious 
boundary, coming from the tetrahedral mesh of the domain. 
Both the double integral on the triangle Tk and the line 
integral on the edge em are computed by means of the Gauss 
quadrature. The integration accuracy can be selected 
according to the following rule. Let Lk be the length of the 
longest edge of the triangle Tk on ΓF, Lm the length of the 
edge on the fictitious boundary, L=max(Lmax,Lm) and d the 
distance between their centers; then for L/d≤0.2  a one-point 
quadrature is used on both the triangle and the edge; for 
0.2<L/d≤1.1 three Gauss points are used on the triangle and 
two points on the edge; otherwise six  points are  used on  the 



 

triangle and three on the edge. This rule has proved to be a 
good tradeoff between accuracy and speed, as extensive 
numerical investigations have shown. 

The singularities arising in the integrand function in (5) are 
overcome by means of analytical formulas [4]. Finally we get: 
 

        GEEEH += extF                             (6) 
 

where H and G are dense matrices. 
 Combining (3) and (6), the global linear algebraic system 
of the FEM-SDBCI method is formed: 
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In order to solve (7) we consider the reduced system: 
 

        BEA =F                                 (8) 

where: 

        F
1MGMHA −+=                     (9) 

        0
1

ext NGMEB −+=                        (10) 
 

Matrix A and vector B in (8) are not directly available. 
However, the vector B is simply built as follows: 1) assume a 
zero initial guess EF=0; 2) solve (3) for E by means of the 
conjugate gradient (CG) solver to obtain E=M−1N0; 3) 
compute B=Eext+GE. Matrix A can be used to perform 
matrix-vector multiplication AEF, as follows: 1) given a 
vector EF; 2) solve (3) with N0=0 to obtain E=−M−1MFEF; 3) 
compute AEF=HEF−GE. 

Then several non-stationary iterative CG-like solvers for 
non symmetric matrices can be used to solve (8). GMRES 
should be preferred, since it performs a true minimization of 
the residual and hence of the number of steps. Note that the 
major drawbacks of GMRES, that is the computing time and 
memory required to compute and store the orthonormal basis, 
in this case are not very heavy, because GMRES works on the 
reduced system (8), in which the number of unknowns is the 
number of the edges on the fictitious boundary.  
 

II.  A NUMERICAL EXAMPLE  
 

The system analysed is the classical Bath plate with two 
holes [5]. A conducting ladder (σ = 32.78⋅102 S/m) with 
two holes (length l=110 mm, width w=60 mm, height 
h=6.35 mm, central column and yoke width 10 mm, lateral 
column 20 mm) is under (s=15 mm) a toroidal coil (1260 
Amp turns, frequency f=50 Hz) having a square section of 
side 20 mm, internal radius 20 mm and axis equations 
x =w/2, y =l/2+s (Fig. 1).  

FEM-SDBCI was applied leaving the coil outside the 
fictitious boundary, which coincides with the conductor 
surface. The x=w/2 plane is a symmetry one, so only half 
of the original domain needs to be meshed, by imposing a 
homogeneous Dirichlet boundary condition on such a 
plane.   The  mesh  consists  of  3360  tetrahedra  and  5546 
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Fig. 1. The Bath plate analyzed. 
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Fig. 2. Real (a) and imaginary (b) parts of the eddy currents in the Bath 
plate. 

 
 

edges, 2786 of which lie on the conductor surface. The 
GMRES solver converges in 11 iteration steps with an end 
iteration tolerance of 0.1 per cent. Fig. 2 shows the eddy 
currents on the z=h/2 plane. A check of the Kirchhoff law was 
made by evaluating the three currents through the three 
sections with the symmetry plane: I1=I2+I3; an acceptable 
fulfilment was obtained. 
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