Eddy Current Computation by the FEM-SDBCI Method
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The hybrid FEM-SDBCI method is developed for the finite element computation of time-harmonic eddy current problemsin open
boundary domains. The method is similar to the well-known FEM-BEM, but it assumes a Dirichlet boundary condition on the
truncation boundary instead of a Neumann one. Shorter solving times are obtained with respect to FEM-BEM.

Index Terms-- Finite element method, boundary element method, integral equations, eddy currents.

I. INTRODUCTION where i is the outward versor normal ©-and E is the

Both FEM-BEM (Finite Element Method - Boundarycomponent of the electric field alorfg-. Discretizing the
Element Method) and FEM-DBCI (Dirichlet Boundarydomain by means of tetrahedral edge elements, japigiag
Condition Iteration) [1,2] couple a differential wfion, the Galerkin method, the following matrix equatios
which governs the interior problem, with an intdgome derived:
which makes use of the free-space Green functioth an ME =N, -M E. (3)
expresses the unknown boundary condition on théidies
truncation boundary. The differences between the twvhereM andMe are sparse matricel,andEr are the arrays
methods are the following: in FEM-BEM an unknowrof the field expansion coefficients for the intdrnand
Neumann condition is assumed on the truncation deayn boundary edges, respectivelys is due to the internal source
which coincides with the integration surface of theegral currents.
equation, whereas in FEM-DBCI an unknown Dirichlet Another equation relating to Er is obtained by expressing
boundary condition is assumed on thencation boundary the field on a point P ofi- by means of the integral:
and another surface is used in the integral equasio that _ _
singularities are avoided. Both the resulting glofigebraic E(P) = Eexe (P) +
systems are partly sparse and partly dense.

In order to alleviate the major drawback of FEM-CIB 1 (:_Lﬁ-xg xEGD')+['h5<_E(P')]x[|l+'h[EoD')|]}de
that is, the insertion of some element layers betwthe  4T°TFlr r r
integration and truncation surfaces, this papersgrs a
modified version of the method, named FEM-SDBCI _ ]
(Singular DBCI), in which the two surfaces are cident field due to the coil source currents external tp anda is

(4)

Yvhere r is the distance between points P ancER, is the

and the integral equation becomes singular. the solid angle of the domain at P. The expansgaificient
En relative to an edgendying on the fictitious boundary is
Il. THE FEM-SDBCI METHOD expressed as:

Consider an eddy current problem, in which a skt oiEm:iJ' Ee Pe) ds+LD
massive conductors are placed near a set of duitaigh 4m L m *€m ard i, ®)
which given time-harmonic source currents flow. Bnthe 1. - . = 1 o — 144
assumption of quasi-static time-harmonic steadiesta Z.”TKL [?HXDXEJr(an)XD?JrnEED?] D, dsdS
behavior, the problem can be conveniently analyaetérms "
of the electric field E by solving the differentedjuation: where & is the k-th triangular patch on the fictitious

DX(VDXE)+j(A)O'E: ~ ] ) boundary, coming from the tetrahedral mesh of tbmain.

S Both the double integral on the triangle &nd the line
wherev is the magnetic reluctivitys the electric conductivity, integral on the edgeneare computed by means of the Gauss
w the angular frequency andl the given current density in ggggrr:iiit:g;et.o ;Zefo;g{:;?r:gtlﬁﬁe ?_Ceiulfte:ythecﬁgng?r? ofsﬁide
the coil regions. In order to apply FEM, the unbdech ' K

. . —_ longest edge of the trianglex Bn e, Lm the length of the
medium is truncated by means of a fictitious boupnda, —_— v
enclosing all the eddy current conductors. Optignabme edge on the fictitious boundary, L=maxgLn) and d the

. . o distance between their centers; then for<D/@ a one-point
coils may be left outside. Amn: a non-homogeneous Dirichlet d . d both the trianal d the:
boundary condition is assumed: quadrature is used on both the triangle and thes;efty

o 0.2<L/ck1.1 three Gauss points are used on the triangle and
nxE=Eg¢ (2) two points on the edge; otherwise six points ased on the



triangle and three on the edge. This rule has prdeebe a
good tradeoff between accuracy and speed, as @mens
numerical investigations have shown.

The singularities arising in the integrand functior(5) are
overcome by means of analytical formulas [4]. Hinele get:

HEg =Eq +GE (6)

whereH andG are dense matrices.

Combining (3) and (6), the global linear algebraystem
of the FEM-SDBCI method is formed:

M M E N
-G H J[Ef Eext
In order to solve (7) we consider the reduced syste
AE. =B 8)
where:
A=H+GM M (9)
B=E.,+GM N, (10)

Matrix A and vector B in (8) are not directly available.
However, the vectoB is simply built as follows: 1) assume a
zero initial gues€Er=0; 2) solve (3) forE by means of the
conjugate gradient (CG) solveio obtain E=M™No; 3)
compute B=Ee+GE. Matrix A can be used to perform
matrix-vector multiplicationAEg, as follows: 1) given a
vectorEg; 2) solve (3) withNo=0 to obtainE=—M M Ef; 3)
computeAEr=HEGE.

Then several non-stationary iterative CG-like smvéor
non symmetric matrices can be used to solve (8)REBS!
should be preferred, since it performs a true migation of
the residual and hence of the number of steps. thatiethe
major drawbacks of GMRES, that is the computingetiamd
memory required to compute and store the orthonldoass,
in this case are not very heavy, because GMRESsnamkhe
reduced system (8), in which the number of unknoisrthe
number of the edges on the fictitious boundary.
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Fig. 1. The Bath plate analyzed.
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Fig. 2. Real (a) and imaginary (b) parts of theyeddrrents in the Bath
plate.

edges, 2786 of which lie on the conductor surfatlee
GMRES solver converges in 11 iteration steps withead
iteration tolerance of 0.1 per cent. Fig. 2 shotws eddy
currents on the z=h/2 plane. A check of the Kirdhlaav was

made by evaluating the three currents through tireet

II. A NUMERICAL EXAMPLE

sections with the symmetry plane=Il+ls; an acceptable

fulfilment was obtained.

The system analysed is the classical Bath plate twid
holes [5]. A conducting laddeis(= 32.7810? S/m) with
two holes (length 1=110 mm, width w=60 mm, height

h=6.35 mm, central column and yoke width 10 mnerkit (4
column 20 mm) is under (s=15 mm) a toroidal coR2€Q
Amp turns, frequency f=50 Hz) having a square sactif [2]

side 20 mm, internal radius 20 mm and axis equsation
X =wi2, y =I/2+s (Fig. 1). 3
FEM-SDBCI was applied leaving the coil outside thé
fictitious boundary, which coincides with the conthr
surface. The x=w/2 plane is a symmetry one, so bal§
of the original domain needs to be meshed, by iingos
homogeneous Dirichlet boundary condition on such ]
plane. The mesh consists of 3360 tetraheahh 5546

(4]
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